根据点对求解刚体变换矩阵
刚体变换 是指在三维空间中,把一个物体做旋转、平移,是一种保持物体大小和形状不变的仿射变换,刚体变换又称为 欧式变换、齐次变换。
问题描述¶
在点云配准的课题下,当我们做完点云匹配之后,将获得N个点对(下标一一对应)
- \(A = \{p_1, p_2, p_3, ..., p_n\}\)
- \(B=\{p'_1, p'_2, p'_3, ..., p'_n\}\)
此时,我们需要根据,这N个点对,解算出刚体变换矩阵中,旋转矩阵\(R\)、偏移量\(t\),使得
\[
{\forall}_{i}, p_i = R*p'_i + t
\]
SVD方法¶
流程简介¶
计算两个点云的质心¶
首先,分别计算两个点云的质心,记 \(c\)为\(A\)的质心,\(c'\)为B的质心
计算方法:质心 = 点云的坐标算数平均值
去质心坐标¶
将每个点的坐标转换为**去质心坐标**,计算方法
- 记\(q_i\)为\(A\)的去质心坐标:\(q_i = p_i - c\)
- 记\(q'_i\)为\(B\)的去质心坐标:\(q'_i = p'_i - c'\)
计算旋转矩阵¶
- 首先,计算 \(W\),这里\(W\)显然是3x3的矩阵
\[
W = \sum_{i}q_i * (\sum_i q'_i)^{T}
\]
- 对\(W\)进行SVD分解,得到
\[
W = U \sum V^T
\]
- 当\(W\)满秩时,则\(R=UV^T\)
求平移量¶
\[
t = p - R*p'
\]
原理可参考文献
- K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-d point sets,” PatternAnalysisandMachineIntelligence, IEEETransactionson,no.5,pp.698–700,1987.
- F. Pomerleau, F. Colas, and R. Siegwart, “A review of point cloud registration algorithms for mobile robotics,” Foundations and Trends in Robotics (FnTROB), vol. 4, no. 1, pp. 1– 104, 2015.
opencv代码¶
完整代码:opencv-examples/solve_transform_matrix.cpp
#include<opencv2/opencv.hpp>
cv::Mat solveTransformMatrix(const std::vector<cv::Point3d>& A, const std::vector<cv::Point3d>& B)
{
int numOfPnts = A.size();
//# 至少3个点对
if(numOfPnts < 3 || numOfPnts != B.size())
{
return {};
}
//# 计算质心
cv::Point3d centroidA, centroidB;
{
for (int i{ 0 }; i < numOfPnts; ++i)
{
centroidA += A[i];
centroidB += B[i];
}
centroidA /= numOfPnts;
centroidB /= numOfPnts;
}
//# 去质心坐标
cv::Mat ASubCentroid(3, numOfPnts, CV_64FC1);
cv::Mat BSubCentroid(3, numOfPnts, CV_64FC1);
for (int i = 0; i < numOfPnts; ++i)//N组点
{
//三行
ASubCentroid.at<double>(0, i) = A[i].x - centroidA.x;
ASubCentroid.at<double>(1, i) = A[i].y - centroidA.y;
ASubCentroid.at<double>(2, i) = A[i].z - centroidA.z;
BSubCentroid.at<double>(0, i) = B[i].x - centroidB.x;
BSubCentroid.at<double>(1, i) = B[i].y - centroidB.y;
BSubCentroid.at<double>(2, i) = B[i].z - centroidB.z;
}
//# 计算旋转矩阵
cv::Mat matS = ASubCentroid * BSubCentroid.t();
cv::Mat matU, matW, matV;
cv::SVDecomp(matS, matW, matU, matV);
cv::Mat matTemp = matU * matV;
double det = cv::determinant(matTemp);//行列式的值
double datM[] = { 1, 0, 0, 0, 1, 0, 0, 0, det };
cv::Mat matM(3, 3, CV_64FC1, datM);
cv::Mat matR = matV.t() * matM * matU.t();
//# 计算平移量
double* datR = (double*)(matR.data);
double delta_X = centroidB.x - (centroidA.x * datR[0] + centroidA.y * datR[1] + centroidA.z * datR[2]);
double delta_Y = centroidB.y - (centroidA.x * datR[3] + centroidA.y * datR[4] + centroidA.z * datR[5]);
double delta_Z = centroidB.z - (centroidA.x * datR[6] + centroidA.y * datR[7] + centroidA.z * datR[8]);
//# 转成4x4矩阵
cv::Mat R_T = (cv::Mat_<double>(4, 4) <<
matR.at<double>(0, 0), matR.at<double>(0, 1), matR.at<double>(0, 2), delta_X,
matR.at<double>(1, 0), matR.at<double>(1, 1), matR.at<double>(1, 2), delta_Y,
matR.at<double>(2, 0), matR.at<double>(2, 1), matR.at<double>(2, 2), delta_Z,
0, 0, 0, 1
);
return R_T;
}
Eigen代码¶
完整代码:cgal-examples/solve_transform_matrix.cpp
#include<CGAL/Simple_cartesian.h>
using Kernel = CGAL::Simple_cartesian<double>;
using Point3 = Kernel::Point_3;
#include<Eigen/Core>
#include<Eigen/Dense> //Matrix.determinant
#include<Eigen/SVD>
Eigen::Matrix4d solveTransformMatrix(const std::vector<Point3>& A, const std::vector<Point3>& B)
{
int numOfPnts = A.size();
//# 至少3个点对
if (numOfPnts < 3 || numOfPnts != B.size())
{
return {};
}
//# 计算质心
double centroidA[3] = {0}, centroidB[3] = {0};
{
for (int i{ 0 }; i < numOfPnts; ++i)
{
for (int j{ 0 }; j < 3; ++j)
{
centroidA[j] += A[i][j];
centroidB[j] += A[i][j];
}
}
for (int j{ 0 }; j < 3; ++j)
{
centroidA[j] /= numOfPnts;
centroidB[j] /= numOfPnts;
}
}
//# 去质心坐标
Eigen::MatrixXd ASubCentroid(3, numOfPnts);
Eigen::MatrixXd BSubCentroid(3, numOfPnts);
for (int i = 0; i < numOfPnts; ++i)//N组点
{
//三行
ASubCentroid(0, i) = A[i].x() - centroidA[0];
ASubCentroid(1, i) = A[i].y() - centroidA[1];
ASubCentroid(2, i) = A[i].z() - centroidA[2];
BSubCentroid(0, i) = B[i].x() - centroidB[0];
BSubCentroid(1, i) = B[i].y() - centroidB[1];
BSubCentroid(2, i) = B[i].z() - centroidB[2];
}
//# 计算旋转矩阵
auto matS = ASubCentroid * BSubCentroid.transpose();
Eigen::JacobiSVD<Eigen::MatrixXd> svd(matS, Eigen::ComputeFullU | Eigen::ComputeFullV);
auto matU = svd.matrixU();
auto matV = svd.matrixV().transpose();
auto matTemp = matU * matV;
double det = matTemp.determinant();//行列式的值
Eigen::Matrix3d matM;
matM << 1, 0, 0, 0, 1, 0, 0, 0, det;
auto matR = matV.transpose() * matM * matU.transpose();
////# 计算平移量
double delta_X = centroidB[0] - (centroidA[0] * matR(0, 0) + centroidA[1] * matR(0, 1) + centroidA[2] * matR(0, 2));
double delta_Y = centroidB[1] - (centroidA[0] * matR(1, 0) + centroidA[1] * matR(1, 1) + centroidA[2] * matR(1, 2));
double delta_Z = centroidB[2] - (centroidA[0] * matR(2, 0) + centroidA[1] * matR(2, 1) + centroidA[2] * matR(2, 2));
//# 转成4x4矩阵
Eigen::Matrix4d RT;
RT <<
matR(0, 0), matR(0, 1), matR(0, 2), delta_X,
matR(1, 0), matR(1, 1), matR(1, 2), delta_Y,
matR(2, 0), matR(2, 1), matR(2, 2), delta_Z,
0, 0, 0, 1;
return RT;
}